
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A Power-Efficient SAD Architecture to Compressed 

Block Processing in Motion Estimation 

Vítor Costa, Murilo Perleberg, Luciano Agostini, Marcelo Porto 

Video Technology Research Group (ViTech) 

Graduate Program in Computing (PPGC) 

Federal University of Pelotas (UFPel) - Pelotas, RS, Brazil 

{vscosta, mrperleberg, agostini, porto}@inf.ufpel.edu.br 
 

Abstract—Video coding has become essential nowadays, 

enabling the transfer of video streams across various physical and 

online platforms. However, the video encoding process is 

extremely demanding in terms of computational power, requiring 

dedicated hardware for efficient real-time applications. Dedicated 

hardware design for video coding must handle various physical 

limitations, such as power dissipation, demanded area in chip, and 

memory related issues (size, accesses, and power). The Motion 

Estimation (ME) is the most important encoding step of current 

video encoders, but also the most time, computational, and 

memory demanding. To tackle this issue, this paper proposes the 

use of compressed blocks in the ME, enabling efficient Sum of 

Absolute Differences (SAD) calculation over a reduced amount of 

data, reducing internal memory demand and saving power 

dissipation in both internal memory and SAD processing. A 

dedicated hardware architecture for a block compressor and a 

configurable SAD architecture, which works over the compressed 

blocks data, were proposed. The ASIC synthesis results 

demonstrated that the use of compressed blocks can reduce the 

internal ME memory size and its power dissipation by up to 75%. 

Moreover, the proposed efficient SAD architecture can achieve up 

to 58.6% of power dissipation reduction in the SAD processing. 

Keywords—Motion Estimation, Block Compression, SAD 

architecture, Hardware Design, Video Coding. 

I. INTRODUCTION  

Currently, video content traffic on the internet has achieved 
a new purpose. In the past, video media were primarily used for 
entertainment purposes, to connect distant friends, or to record 
unique moments. Nowadays, video content has become highly 
diversified: streaming companies are preferred over traditional 
television by audiences [1], digital marketing and social 
networks increasingly explore the creation of short videos that 
quickly capture the viewer's attention [2], and meeting platforms 
no longer serve just to connect two people but are also used for 
business and learning [3]. All these trends highlight the necessity 
of having an efficient way to handle video content. 

However, the video encoding process is a highly resource-
intensive task, demanding many limitations and optimizations in 
the encoding standards to enable its implementation in an 
efficient dedicated hardware architecture that aligns with 
physical constraints such as power and heat dissipation, circuit 
area, operating frequency, and memory access, among others. 
Among all the stages in modern video encoders such as High 

Efficiency Video Coding (HEVC) [4], Versatile Video Coding 
(VVC) [5], and  AOMedia Video 1 (AV1) [6], the Motion 
Estimation (ME) stands out due to its enormous complexity and 
computational demand, given the numerous computations the 
encoder needs to perform. The ME step consumes up to 60.7% 
of the total encoding time [7] and at least 29.5% of the memory 
accesses in the HEVC encoder [8].  

The intensive memory accesses from ME results in high 
power dissipation demand from the memory in ME systems. So, 
to reduce memory accesses block compression algorithm is 
proposed in [9], which compresses the Candidate Blocks (CB) 
and the Prediction Unit (PU) data before the internal ME 
memory storage [9]. The block compressor algorithm presented 
in [9] compresses a 4x4 samples (8 bits) block into 32 bits, 
providing a reduction of 75% in internal ME memory with a BD-
Rate drawback of only 0.2% [9]. The block compressor works 
with 16 compression modes, which can be signalized with a 
four-bit mode prefix. However, the ME process in [10] requires 
the full block decompression before the SAD operations, taking 
no advantages of the possible compressed-data reuse. 

This paper proposes the use of compressed blocks for the 
efficient design of a dedicated and configurable SAD 
architecture, reducing internal ME memory size/power and also 
reducing the power dissipation of the SAD operation. This paper 
also introduces a new approach, by proposing a configurable 
SAD architecture to work over the compressed blocks data, 
which can be dynamically configured to work over a reduces 
amount of data according to the compression mode used at the 
block compressor. Two dedicated hardware architectures are 
presented, the Block Compressor Unit (BCU), which 
implements the block compressor algorithm presented in [9], 
and the Configurable SAD Tree Calculator (CSTC), which 
features a Mode Analyzer (MA) unit that can dynamically 
deactivate unnecessary operators according to the combination 
of compression modes applied over the compressed blocks, 
thereby reducing power dissipation of the SAD processing unit. 
The ASIC synthesis results of BCU show area and power 
overhead of only 52.97 Kgates and 85.02mW, respectively. The 
CSTC synthesis results show power dissipation reductions up to 
58.6%, in comparison with the original approach. 

II. MOTIVATION AND A CASE STUDY 

The ME aims to estimate the displacement of a PU, a block 
of samples from a frame being encoded, with the most similar 
Candidate Block (CB) from an already encoded reference frame 
[11]. While it provides expressive compression capabilities, the 
ME is by far the most resource intensive step in current video 

This research was financed in part by the Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. It was also 

financed in part by the Fundação de Amparo à Pesquisa do Estado do Rio 
Grande do Sul – Brasil (FAPERGS), and by the Conselho Nacional de 

Desenvolvimento Científico e Tecnológico – Brasil (CNPq). 



coders, since it must calculate the SAD similarity criterion to all 
CBs inside a delimited Search Area (SA) to find the best CB to 
a current PU.     

The search for the best CB can prove quite a challenge 
computationally especially for High (HD) and Ultra-High 
Definition (UHD) video resolutions. To evaluate a 64x64 PU, 
up to 329 CBs may be evaluated [10], thus requesting 84,224 
4x4 CBs from the memory, demanding up to 2.6MB of internal 
memory for the ME when considering 8-bit samples from both 
PU and CB. Considering an UHD 4K video (3840x2160 pixels) 
with bit depth of 8 and a framerate of 60, each frame of the video 
displays 2,040 64x64 PUs, accounting for a memory bandwidth 
of up to 307 Gigabytes per second, a prohibitive number for 
current memory technologies.  

Data compression over both the PU and CBs can be 
performed as strategy to reduce memory requirements in 
dedicated ME design. In [9], a block compressor algorithm is 
proposed to compress 4x4 PU/CBs, reducing the necessary 128 
bits (4 x 4 x 8 bits) into only 32 bits. Considering the HEVC 
standard as an example, the necessary memory to store a 64x64 
PU and its 192x192 SA may be reduced from 40kB to 10kB, a 
reduction of 75%. This compression also causes a reduction in 
the number of bytes necessary to perform the evaluations 
required by each 64x64 PU of the ME step, from 2.6MB to 
658kB. Furthermore, up to 85.9% of the power dissipation of a 
dedicated ME hardware for the HEVC comes from the memory 
unit [10]. For that reason, by compressing the blocks it is 
possible to not just reduce the memory size necessary but it also 
greatly reduce the power related to the internal ME memory in 
at least 75%. 

Besides the benefits related to the memory, another approach 
can be also exploited by the use of compressed blocks during the 
ME process. The algorithm proposed in [9], which will be 
detailed in Section III, for the block compression comes with the 
benefit of enabling data reutilization during the SAD 
calculations. If less values are utilized in order to represent a 
whole 4x4 block, some SAD calculations become redundant. 
The algorithm defines 16 modes of compression, and according 
to the combination of those selected compression modes, some 
calculations can be bypassed during the SAD process. By 
monitoring the compression modes of each block, it is possible 
to dynamically deactivate some operation units in the SAD tree, 
further reducing the power from the processing unit of the ME.  

III. PROPOSED ARCHITECTURES 

This paper proposes two different hardware architectures, 
called: Block Compressor Unit (BCU) and Configurable SAD 
Tree Calculator (CSTC).  

A. Block Compressor Unit (BCU) 

The BCU is responsible to compress 4x4 blocks (PUs and 
CBs) of 8-bit samples into a vector with only 32 bits. The 
compression algorithm employed by the BCU was proposed in 
[9], where the authors define 16 compression modes to be 
evaluated over the 4x4 input block. Each mode uses only four of 
the 16 sample values available at the input block, reconstructing 
an entire 4x4 block by reusing those four selected sample values. 
The modes can be characterized in vertical, horizontal, and 
quadrant, according to which samples are selected to represent 

the input block, as shown in Fig. 1. Vertical modes such as 
modes 0–3, and mode 13, uses the values from one column or 
the average value from each column [9]. Horizontal modes, such 
as modes 4–7, and mode 14, uses the values from one row or the 
average value from each row [9]. Quadrant modes such as 
modes 8–12, and mode 15, uses a different sample value from 
each 2x2 quadrant or the average value from each quadrant [9].  

The selection of the best mode is performed exhaustively, 
where all 16 modes are evaluated, and the one with the smallest 
SAD compared to the original block is chosen. After obtaining 
the best mode, the four selected sample values are truncated to 
7-bit values, discarding their least significant bit. This allows the 
storage of the four sample values in 28 bits (4 x 7 = 28), with the 
four most significant bits of the 32-bit vector indicating which 
one of the 16 compression modes was used [9]. It is important 
to mention that, besides a complete ME hardware design, 
including the block compressor, is presented in [9], the paper 
only describes the compression algorithm, providing no details 
about the block compressor hardware implementation. 

The proposed BCU architecture can be seen in Fig. 2, and it 
is divided into four stages. The first stage is responsible for 
generating the 4x4 reconstructed blocks reutilizing four sample 
values of the input block, for each of 16 modes. After that, the 
second stage computes the SAD values from each mode by 
using 16 SAD trees. The third stage performs the selection of the 
best mode of compression based on the smallest SAD. Using a 
tree composed by 31 multiplexer (MUX) selection, the binary 
value (0000 to 1111) of each mode is gated through the MUXes, 
and the SAD values of each mode in a single MUX are 
subtracted with the smallest one been used as selector. Finally, 
the fourth stage elaborates the 32-bit vector based on the best 
mode analyzed (the one with smallest SAD value), alongside 
concatenating the 4-bit prefix, regarding the best compression 
mode, with the truncated values of the four selected samples. 

By using the BCU to compress a 128-bits block in a 32-bit 
word, it is possible to achieve a reduction in internal ME 
memory size of 75%. Moreover, the use of the compressed PU 
and CB data to perform the ME can further reduce the internal 
memory bandwidth and SAD computations. It is worth to 
mention that, considering the results in [9], the use of proposed 
block compressor in the ME of the HEVC introduced low 
coding efficiency drawback of only 0.2% in the BD-Rate. 

 
Fig. 1. Exemplification of compression modes and linear 32-bit                       

vector containing four generic sample values. 

 



B. Configurable SAD Tree Calculator (CSTC) 

As previously stated, the use of compressed data for the PUs 
and the CBs can reduce the amount of computation during the 
SAD calculation. To explore the benefits of the compressed 
block this paper proposes the Configurable SAD Tree Calculator 
(CSTC). The CSTC implementation is shown in Fig. 3 and Fig. 
4. It consists of a typical 4x4 block SAD tree with 31 operators 
(adders and subtractors), but with a control unit called Mode 
Analyzer (MA). The MA evaluates which operators must be 
used in order to obtain the SAD, based on the four most 
significant bits (compression mode) of each of the two 
compressed input blocks. 

Considering the 16 modes of compression supported by the 
BCU, it is possible to determine some correlation, illustrated in 
Fig. 5, between vertical, horizontal and quadrant modes. The 
best-case scenario occurs if both selected modes (PU and CB) 
are the same, i.e., both are vertical, horizontal or quadrant. In 
this case, only four Multiplexed Diff units are required to obtain 
the SAD. This happens since there is only four different 
subtractions performed by the SAD tree, so it is only necessary 
to sum the absolute results of those four subtractions and shift 
two bits to the left to multiply the obtained result by four. A 
medium-case scenario occurs when one of the modes is quadrant 
and the other one is either vertical or horizontal. In in this case 
there are exactly eight different subtractions to be performed, 
requiring only eight enabled Multiplexed Diff units to fully 
obtain the SAD. The worst-case scenario happens when one of 
the modes is vertical and the other one is horizontal. In this 
situation, it is mandatory to use all 16 Multiplexed Diff unit 
available in the CSTC architecture. 

The MA part of the architecture implements the logic 
presented in Fig. 4, generating a control word. Each bit of the 
control word goes into each of the 16 Multiplexed Diff units of 
the architecture seen in Fig. 3. Each Multiplexed Diff unit is 
composed by two 2:1 MUXes followed by a subtractor. When 
the control word is “0”, it forces the value “0” to the subtractor 
inputs, consequently, data-gating the following unit inside the 
SAD tree. This strategy allows for a reduction in the architecture 
switching activity, thus decreasing its dynamic power 
dissipation.  

IV. SYNTHESIS RESULTS 

The proposed architectures were described in VHDL and 
synthesized using the RTL Compiler tool [12] to a TSMC 40nm 
technology standard-cells library [13]. The operational 
frequency of 370MHz was used for both architectures, which 
corresponds to the maximum frequency supported by the BCU 
architecture, thus having the longest critical path between the 

two architectures.  In order to validate the architectures and 
generate the power results, a Value Change Dump (VCD) file 
containing ten thousand random-generated inputs were used. 

The power overhead and cell area consumption imposed by 
the BCU is provided by Table I, and the synthesis results of the 
CSTC architecture are presented in Table II, where the power 
dissipation was evaluated for the different scenarios the CSTC 
can work. As can be seen in Table II, the area results are the 
same (21.67 Kgates), since the hardware remains the same for 
all scenarios. The only difference lies in the power estimation 
results, where each scenario provides the proper block 
compression modes, as presented in Fig. 5, to correctly disable 
the Multiplexed Diff units. Table II also presents the synthesis 
results for a Default SAD tree (approach in [9]), which has the 
same behavior of the CSTC in the worst-case scenario. The 
Default SAD tree architecture is very similar to the one 
presented in Fig. 3, but without the Mode Analyzer (MA) unit 
and the MUXes inside the Multiplexed Diff units.  

Considering the Default SAD tree as the baseline result for 
comparisons, it is possible to see that CSTC requires more area 
(about 14.7%) due to the additional control hardware. Taking 

 
Fig. 3. Top-level architecture of the CSTC. 

 
Fig. 4. Overview of the multiplexed diff architecture and mode analyzer 

 

 
Fig. 2. High-level diagram of the BCU architecture. 



the power results, the worst-case scenario of CSTC presents 
higher power dissipation (about 6.8%), as expected. However, 
medium-case and best-case scenarios present power dissipation 
reductions of 35.2% and 58.6%, respectively. To find the power 
reductions of the CSTC in a realistic scenario, the occurrences 
of the selected compression modes of each PU and CB during 
the video encoding process must be discovered. However, 
considering a balanced distribution of the tree scenarios (33.33% 
each), the CSTC average power reduction is 29% when 
compared to the Default SAD Tree.  

V. CONCLUSIONS 

This paper proposed a power-efficient approach to the SAD 
calculation over compressed block at the ME which can be 
applied to any current video encoding standard. Two dedicated 
hardware architectures were presented, the first one is a block 
compressor responsible to compress the block samples from the 
current and the reference frames. The second architecture is a 
configurable SAD tree that works over the compressed data, 
aiming to dynamically disable unnecessary operation units. The 
proposed architectures can produce a reduction of 75% in both 
internal ME memory size and its power dissipation, and also a 
power reduction up to 58.6% in SAD processing unit. 

Future works include the use of pipeline in order to increase 
the operating frequency of both architectures, a statistical 
analysis over the occurrences of the compression modes in a 
specific video encoder, to define a “realistic scenario” for the 
CSTC architecture, and the evaluation of the coding efficiency 
losses introduced by the use of the block compressor in the VVC 
and AV1 encoders.  

ACKNOWLEDGMENT  

I dedicate this work to my grandmother, who passed away on 

22 March 2024. 

REFERENCES 

 
[1] T. Evens, A. Henderickx and P. Conradie, “Technological affordances of 

video streaming platforms: Why people prefer video streaming platforms 
over television,” 2023 European Journal of Communication, 39, pp. 1-19, 
doi: 10.1177/02673231231155731. 

[2] Dash. “Video marketing statistics for your 2024 campaings”. Retrieved 
May 30, 2024:  https://www.dash.app/blog/video-marketing-statistics 

[3] Clockwise. “The rise and rise of virtual meetings”. Retrieved May 30, 
2024: https://work-clockwise.com/articles/the-rise-and-rise-of-virtual-
meetings/ 

[4] ITU. “H.265: High Efficiency Video Coding”. Retrieved May 30, 2024: 
https://www.itu.int/rec/T-REC-H.265-202309-I/en 

[5] ITU. “H.266: Versatile Video Coding”. Retrieved May 30, 2024: 
https://www.itu.int/rec/T-REC-H.266-202309-I/en 

[6] Alliance for Open Media. “AV1 Video Codec”. Retrieved May 30, 2024: 
https://aomedia.org/av1/ 

[7] M. Grellert, S. Bampi and B. Zatt, "Complexity-scalable HEVC 
encoding," 2016 Picture Coding Symposium (PCS), Nuremberg, 
Germany, 2016, pp. 1-5, doi: 10.1109/PCS.2016.7906356. 

[8] A. Mativi, E. Monteiro and S. Bampi, "Memory access profiling for 
HEVC encoders," 2016 IEEE 7th Latin American Symposium on Circuits 
& Systems (LASCAS), Florianopolis, Brazil, 2016, pp. 243-246, doi: 
10.1109/LASCAS.2016.7451055. 

[9] Y. Fan, L. Huang, B. Hao and X. Zeng, "A Hardware-Oriented IME 
Algorithm for HEVC and Its Hardware Implementation," in IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 28, no. 
8, pp. 2048-2057, Aug. 2018, doi: 10.1109/TCSVT.2017.2702194. 

[10] M. Perleberg, V. Afonso, L. Agostini, B. Zatt and M. Porto, "Memory-
Centered Motion Estimation System With CTB-Based Full-Splitting 
Algorithm," in IEEE Transactions on Consumer Electronics, doi: 
10.1109/TCE.2024.3399123. 

[11] V. Sze, M. Budagavi, and G. J. Sullivan, “High Efficiency Video Coding 
(HEVC),” Springer International Publishing, 2014. doi: 10.1007/978-3-
319-06895-4 

[12] Cadence. “Cadence RTL Compiler”. Retrieved May 30, 2024: 
https://www.cadence.com/en_US/home/training/all-courses.html 

[13] TSMC. “40nm Technology”. Retrieved May 30, 2024: 
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_40
nm 

 

TABLE I.  BUC SYNTHESIS RESULTS USING TSMC 40NM 

Architecture 
Cell area 

(Kgates) 

Leakage power 

(mW) 

Dynamic 

power (mW) 

Total power 

(mW) 

PUDC 52.97 0.15 84.88 85.02 

 
TABLE II.  CSTC SYNTHESIS RESULTS FOR EACH OPERATION SCENARIO 

USING TSMC 40NM 

Architecture 
Cell area 

(Kgates) 

Dynamic 

power (mW) 

Total power 

(mw) 

Total power   

delta (%) 

Default  

SAD Tree  
18.89 1.26 1.26 - 

CSTC  

(best-case) 
21.67 0.52 0.52 -58.6% 

CSTC  

(medium-case) 
21.67 0.81 0.82 -35.2% 

CSTC  

(worst-case) 
21.67 1.34 1.35 +6.8% 

 

 
Fig. 5. Correlation between compression modes and its effects on SSTC 

 


